
ANALYSIS OF BELIEF PROPAGATION FOR HARDWARE REALIZATION

Chao-Chung Cheng
1
, Chia-Kai Liang

2
, Yen-Chieh Lai

3
, Homer H. Chen

2
, and Liang-Gee Chen

1

Graduate Institute of Electronics Engineering
1
,

Graduate Institute of Communication Engineering
2
,

Department of Electrical Engineering
3
,

National Taiwan University

ABSTRACT

Belief propagation has become a popular technique for solv-

ing computer vision problems, such as stereo estimation and

image denoising. However, it requires large memory and

bandwidth, and hence naïve hardware implementation is

prohibitive. In this paper, we first analyze the memory and

bandwidth requirements of the technique from the hardware

perspective. Then, we propose a tile-based belief propaga-

tion algorithm that works with existing data reuse schemes

and achieves bandwidth reduction by a factor of 10 to 400.

We apply the proposed algorithm to stereo estimation and

show that its performance is comparable to the original al-

gorithm.

Index Terms— Belief propagation, hardware imple-

mentation, stereo estimation.

1. INTRODUCTION

Many problems in computer vision and image processing

attempt to assign an optimal label to each node (pixel, block,

or some other element) of a scene representation. A label

stands for a local quantity. For example, the label for a pixel

is the disparity vector in stereo estimation and the motion

vector in motion/optical flow estimation.

Finding the optimal label assignment can be formulated

as a problem of energy (cost) minimization on a Markov

Random Field (MRF). The energy has two terms: a data

term Ed that penalizes the inconsistency between the labels

and the observed data, and a smoothness term Es that favors

the spatial coherence of the labels. The optimal labels {lp}

are the labels that minimize the combination of these two

terms,

     
 ,

arg min , ,p d p s p q

p P p q G

l E l E l l
 

  
  

  
  (1)

where P is the set of all nodes and G is a specified neigh-

borhood, such as the 4-nearest neighboring pixels.

Though the MRF formulation was proposed more than

20 years ago [1], the problem is NP-hard. In the late nineties,

efficient algorithms such as graph cuts [2], (loopy) belief

propagation [3], and numerous variants were proposed [4].

These algorithms can find strong locally optimal solution in

polynomial time and enable many applications such as im-

age denoising, inpainting, image stitching, bi-layer segmen-

tation, etc [4].

While the software implementation of these algorithms

is generally free of resource constraint, the hardware im-

plementation needs to consider bandwidth, internal and ex-

ternal memory size, degree of parallelism, regularity of

memory access, etc. Therefore, an algorithm efficient on

software may not be suitable for hardware implementation.

This is particularly true for portable devices, such as cell

phones and digital cameras.

In our initial study, we find that belief propagation has

high potential for hardware implementation. It is highly pa-

rallel and only uses simple operations. However, it requires

huge memory and bandwidth. Thus, the straightforward

hardware implementation is prohibitive.

In this paper, we first focus on the bandwidth and

memory analysis of the belief propagation technique. Then

we propose a tile-based belief propagation algorithm to

overcome the memory and bandwidth bottlenecks. Com-

pared to the original belief propagation, the proposed algo-

rithm has similar performance with much lower bandwidth

and memory requirements. Therefore, it is more suitable for

hardware implementation than the original algorithm.

The rest of the paper is organized as follows. In Section

2, we review the original belief propagation and analyze its

bandwidth and memory consumption. In Section 3, we

present the proposed tile-based belief propagation in detail.

In Section 4, we test the proposed algorithm on stereo esti-

mation. We conclude this paper and discuss future research

directions in Section 5.

2. BELIEF PROPAGATION

The belief propagation (BP) iteratively performs the mes-

sage passing operations. At iteration t, each node p sends a

 𝐿 -dimensional message 𝑀𝑝𝑞
𝑡 to its neighbor q. Each entity

𝑀𝑝𝑞
𝑡 (l) in the message is

       
 

1

, \

min , ,
p

t t

pq q s q d p p
l L

p p q

M l E l l E l M l




 

  
     

  


N

 (2)

where L is the set of all labels, |L| is the number of labels,

and Np is the set of the neighbors of p (Fig. 1(a)). 𝑀𝑝𝑞
𝑡 (l)

encodes the opinion of p about assigning label lq to q. Node

p first scans all labels l' and decides the one having the

greatest support for assigning l to q based on 1) the smooth-

ness (compatibility) cost between l' and l (the first term in

Eq. (2)), 2) the self-judgment of p about being assigned l'

(the second term), and 3) The opinion from neighbors ex-

pect q (Np\q) about assigning l' (the third term). During BP,

all nodes exchange messages (opinions) about the label as-

signment and through iterations, nodes far away from p can

influence p’s label assignment.

The messages are iteratively propagated. As the BP-M

method in [4], we define a single iteration as propagating a

message from the top-left node to the bottom right one, and

then propagating a message from the bottom-left node to the

top-left one. After enough number of iterations, say T, the

label of p is determined based on the local likelihood and

the messages from the neighbors (Fig. 1(b)):

   
   ,

arg min .T

p d p p
l L

p p N p

l E l M l


 

  
  

  
 (3)

To this point we can clearly see the advantages of BP

for hardware implementation. Firstly, it is highly parallel. In

message passing, each node loads the messages from the

previous iteration, operates independently, and generates

new messages. Secondly, it only uses simple operations

such as additions and comparisons. Third, the memory

access is regular. If we update the message sequentially, the

required input data can be streamed into the processor with

ease. On the contrary, other algorithms such as graph cut

require complicated operations like tree construction and

sorting. They also frequently perform the random memory

access, which obstruct the efficient hardware pipeline.

However, BP cannot be efficiently implemented in

hardware due to the huge memory and bandwidth consump-

tion. Like other MRF algorithms, it stores N|L| data terms,

where N is the number of nodes (the smoothness term can

usually be analytically calculated on-the-fly). BP stores ex-

tra 4N|L| messages for the 4-connected neighborhood system.

Each neighboring pair has two messages, one for each direc-

tion. Therefore, it totally needs to store 5N|L| elements. For

example, in stereo estimation on a VGA image pair with the

disparity range of 16, assume each message and data term

takes 1 bytes, BP totally takes 24,576,000 bytes, 80 times

the size of the image.

In performing message passing, each node loads 3

messages and |L| data term and outputs 1 new message. Be-

cause for each node there are four outgoing messages, BP

requires 20N|L| data transferring per iteration and 20N|L|T

for convergence. Using the example above and assume BP

converges at T=50, this amounts to 4,915,200,000 (4.58G)

bytes data transferring. For real-time video application, it

corresponds to 137.33GB per second. Obviously this daunt-

ing bandwidth requirement is infeasible for the existing

hardware, as discussed in [8].

Therefore, proper data reuse and data reduction strate-

gies must be applied for efficient hardware design. In [6],

several compression techniques are proposed to compress

the messages. However, the number of data transfer is un-

changed. Another trivial method is to partition the image

into many blocks and perform BP within each block inde-

pendently [7]. However, this approach downgrades the be-

lief propagation from a global technique into a local one and

results in bad local minimums (See Table 2 and Fig. 6 and

7). In the next section, we attack the bandwidth bottleneck at

the algorithm level by using a better message passing me-

thod. However, the proposed method can cooperate with

many existing data reuse method.

3. TILE-BASED BELIEF PROPAGATION

Before describing the proposed algorithm, we first look at

the message passing procedure locally at a small tile (Fig.

2(a)). We can see that for this small region, we do not have

to care about how messages outside the region (red ones in

Fig. 2(a)) are constructed. As long as the procedure is to-

ward convergence, these messages should carry the correct

opinions about the labeling of this region from other regions.

According to the Markovian property, knowing these mes-

s

r

p q

u

t

pqM

1t

rpM 

1t

spM 

1t

upM

s

r

p q

u

T

pqM

T

rpM

T

spM
T

upM

(a) (b)

Figure 1. (a) A message at iteration t from p to q is constructed

using the messages from r, s, and u to p at iteration t−1. (b) The

node p collects all messages from the neighbors to decide the best

label.

(a) (b)

Tile

Figure 2. (a) For a small block (black nodes), the messages

around it (red arrows) give enough information about the outside

world. (b) The proposed tile-based belief propagation method. The

tiles are first processed in a raster scan order and then in an in-

verse-raster scan order.

sages is identical to knowing all information of the nodes

outside the current tile.

This assumption is verified by a simple experiment.

We setup a MRF with simple energy definition and perform

BP. After convergence, we reset the messages within a spe-

cific region and re-run BP with this region by fixing the

message around the boundary of the region. After conver-

gence again, we find that the new messages are almost iden-

tical to the original ones before reset. In other words, given

the boundary messages and the data terms and smoothness

terms of a local patch, the messages inside can be thrown

away without losing any information.

3.1. Proposed Algorithm

According to this observation, we propose a tile-based

belief propagation method. The algorithm is illustrated in

Fig. 2(b) and the pseudocode is shown in Fig. 3. In the be-

ginning, the image is split into non-overlapping tiles of size

B×B. The algorithm has a two-level structure: outer and

inner iterations. In the outer iteration, the tiles are first

processed in a raster scan order (line 3). For each tile, the

messages from other tiles (red ones in Fig. 2 (b)) and the

date terms Es are loaded and then BP (Eq. (2)) is preformed

within the tile (BPinOneTile in Fig. 3). After Ti inner itera-

tions (line 6-7), the messages sending outside the tile are

stored (blue ones in Fig. 2(b)). The inner iterations acts like

a filtering operation that purifies the messages according to

the data terms and smoothness terms within the tile. At the

end of the scan, we reach the bottom-right tile. We then per-

form the same procedure in an inverse-raster scan order

(line 9-17, Fig. 2(b)). At the To outer iteration, the best la-

bels are determined using Eq. (3).

3.2. Bandwidth and Memory Analysis

3.2.1 Proposed Tile-based Belief Propagation

The main advantage of the proposed algorithm is that

compared with the original BP, the memory and bandwidth

consumption is greatly reduced. We do not need to store the

messages inside the tile. In each new iteration, the messages

inside can be re-generated from the boundary messages and

data terms. Therefore, the off-chip storage of the messages

becomes:

    4 4W B H B B L N L B   (4)

where W and H are the width and height of the image, re-

spectively (WH=N). The reduction is a factor of B. Similarly,

the bandwidth becomes:

Data terms Incoming Outgoing
messages messages

2(4 4) (2 16) .o oN L N L B N L B T N L N L B T   
(5)

The factor 2 is because each tile is processed twice at each

iteration.

We use the same example, stereo estimation on a data-

set of VGA size, and the disparity range is 16, to demon-

strate the memory and bandwidth reduction of the proposed

algorithm. Because each algorithm has different conver-

gence property, we assume the number of the (outer) itera-

tion is 1 here. The comparison is shown in Table 1. For the

original BP, when there is only one PE, it requires very

small internal memory. However, it requires huge external

memory and bandwidth. The block-based BP processes B
2

nodes at a time and thus the 4B
2
 messages between the

nodes of the same block can be loaded at once. After the

messages are updated, they can be sent to the external to-

gether. This method can save the bandwidth to 45%. How-

ever, the size of the external memory is unchanged since all

messages must be stored. Also the reduction factor does not

change with the block size. This limits the flexibility of the

design. Furthermore, because the messages between the

blocks are dropped, the results could be disastrous (see Sec-

tion 4).

The proposed tile-based BP also performs the message

passing one tile at a time. However, only the messages

around the tile are stored and transferred. Therefore, the

external memory reduces to 21.25~30% and the bandwidth

reduces to 5.625~10%, depending on the tile size. Although

the tile-based BP requires a larger internal memory than the

original BP does, this cost is affordable to the current tech-

nology.

function {lp}TileBasedBP(Ed, Es, B, To, Ti)

1 Initialize all message entities 𝑀𝑝𝑞
0 (𝑙)=0

2 for to=1,…,To

3 loop through all tiles in a raster scan order

4 Load 𝑀𝑝𝑞
𝑡−1 for p∉C and q∈C; //C is the current tile.

5 Load Ed(lp) for p∈C;

6 for ti=1,…,Ti

7 {𝑀𝑝𝑞
𝑡 }  BPinOneTile({𝑀𝑝𝑞

𝑡−1}, Ed, C);

8 Store {𝑀𝑝𝑞
𝑡 }for p∈C and q∉C;

9 loop through all tiles in a inverse-raster scan order

10 Load {𝑀𝑝𝑞
𝑡−1} for p∉C and q∈C;

11 Load Ed(lp) for p∈C;

12 for ti=1,…,Ti

13 {𝑀𝑝𝑞
𝑡 } BPinOneTile({𝑀𝑝𝑞

𝑡−1}, Ed, C);

14 if (to = To) Obtain {lp} for p∈C; //using Eq. (3);

15 else Store {𝑀𝑝𝑞
𝑡 } for p∈C and q∉C;

16 return {lp};

function {𝑀𝑝𝑞
𝑡 } BPinOneTile({𝑀𝑝𝑞

𝑡−1}, Ed, C)

17 Initialize 𝑀𝑝𝑞
𝑡 (𝑙)=0 for all p∈C and q ∈C;

18 Update rightward messages; //using Eq. (2);

19 Update leftward messages;

20 Update downward messages;

21 Update upward messages;

22 return {𝑀𝑝𝑞
𝑡 };

Figure 3. The pseudocode of the proposed algorithm.

3.2.2 Data Reuse for Data Term Calculation

While the proposed algorithm greatly reduces the

memory and bandwidth, the advantages of the original BP

are still preserved. The algorithm is still highly parallel. We

can use B identical process elements (PE’s) to calculate one

row (column) of new messages in parallel. Furthermore,

because the algorithm is tile-based, several pipeline and data

reuse techniques used in the video compression can be ap-

plied [5] to lower the bandwidth by using slightly more in-

ternal memory.

For example, in stereo estimation, the data term Ed(lp)

is usually defined as a function of the intensity difference

between the pixel (px, py) in left image IL and the pixel (px+lp,

py) in right image IR:

      , , .  d p L x y R x p yE l f I p p I p l p (6)

Because the proposed algorithm is performed in tile-based,

we can . When performing BP for one tile, we can load the

images and construct the data terms of the next tile. Using

the level-C memory reuse scheme [5], we only need to load

2B
2
 bytes for calculating the data cost of one tile, as shown

in Fig. 4. Therefore, the external memory for the data terms

are eliminated and the overall bandwidth decreases from

(2N|L|+16N|L|/B)T to:

image
messagespixels

2(2 8) (4 16) .  oN N L B T N N L B T
(7)

And the internal memory size increases from |L|B
2
 to

2 2

 tiledata term range

| | () .  
currentsearch

L B B L B B (8)

Using this technique, we can further reduce the memory and

bandwidth consumption, as shown in Table 1. Compared

with to original BP, the external memory is reduced by a

factor of 10~80 and the bandwidth is reduced by a factor of

18~80.

4. EXPRIMENTAL RESULTS

We have shown that the proposed algorithm can significant-

ly reduce the memory and bandwidth. Here we use the ste-

reo estimation to show that performance-wise, our algorithm

is much better than the block-based BP and comparable to

the original BP.

 Original BP [3] Proposed tile-based BP Proposed tile-based BP + data reuse

Block(tile)-size (B2) − 82 162 322 642 82 162 322 642

Internal
memory

Data terms 16 1,024 4,096 16,384 65,536 1,280 4,864 18,944 74,752

Messages 64 4,096 16,384 65,536 262,144 4,096 16,384 65,536 262,144

Total 80 5,120 20,480 81,920 327,680 5,376 21,248 84,480 336,896

Factor (to the

same tile size)

100% 100% 100% 100% 105.0% 103.8% 103.1% 102.8%

External

memory

Data terms 4,915,200 4,915,200 0

Messages 19,660,800 2,457,600 1,228,800 614,400 307,200 2,457,600 1,228,800 614,400 307,200

Total 24,576,000 7,372,800 6,144,000 5,529,600 5,222,400 2,457,600 1,228,800 614,400 307,200

Factor (to

original BP)
100.00% 30% 25% 22.5% 21.25% 10% 5% 2.5% 1.25%

Bandwidth

Data terms 19,660,800 4,915,200 614,400

Messages 78,643,200 4,915,200 2,457,600 1,228,800 614,400 4,915,200 2,457,600 1,228,800 614,400

Total 98,304,000 9,830,400 7,372,800 6,144,000 5,529,600 5,529,600 3,072,000 1,843,200 1,228,800

Factor (to

original BP)
100% 10% 7.5% 6.25% 5.625% 5.625% 3.125% 1.875% 1.25%

Table 1. The memory and bandwidth consumption of the original belief propagation (BP) [3], the proposed tiles-based BP, and the tile-

based BP plus the data reuse technique for on-line calculating the data terms (without counting the external memory size of the image pair).

Figure 4. Level-C data reuse for calculating the data terms. Bi and

Bi-1 are two successive blocks in the left image. Because most of

their search region in the right image is overlapped, besides the

block Bi+1 itself, only B2 pixels are needed to be loaded.

(a) (b)

(c) (d)

Figure 5. Dataset for stereo estimation. (a) Cones, (b) Teddy, (c)

Tsukuba, and (d) Venus.

We use four dataset: Cones, Teddy, Tsukuba, and Ve-

nus, from the Middlebury vision website [9] (Fig. 5 (a-d)).

These dataset are commonly used in the computer vision

community for performance measurement [10]. Since our

goal is to compare the performance of difference BP algo-

rithms, we adopt the simple data and smoothness term defi-

nitions according to [2]. The data term is the Birchfield-

Tomasi method which can minimize the sampling effect

[11]. The smoothness term is a generalized Potts model:

   , min , . s p q p q sE l l l l T (9)

For a fair comparison, we set Ts=2 and λ=20 for all BP algo-

rithms.

Different BP algorithms require different number of

iterations. To reach the performance limitation of the algo-

rithms, we empirically choose the number of the iterations

to be large enough such that all algorithms converge for all

dataset. For the original BP and the block-based BP, T is 50;

for the tile-based BP, inner iteration Ti is set to 8 for B=32

and 24 for B=64, and To is 10 (In fact, setting To=3 gives

visually plausible results).

We first examine the energy value of the difference al-

gorithms after convergence, as summarized in Table 2.

Compared with the block-based BP, the solution found by

the tile-based BP is more close to the one found by the orig-

inal BP. For example, when B = 32, block-base BP increases

the energy by 3.59 to 6.44% (avg. 4.81%), and the proposed

tile-based BP only increases the energy by 0.15 to 2.20%

(avg. 1.22%). Actually, in all our experiments, after the first

outer iteration, our energies are already below the ones ob-

tained by the block-based BP after 50 iterations.

Not only the energy obtained by the tile-based BP is

closer to that obtained by the original BP, the resulting dis-

parity is also more accurate. The estimated disparity maps of

Venus and Tsukuba are shown in Fig. 6 and 7, respectively.

We can see that the block-based BP results in serious blocky

artifacts because the messages between the neighboring

blocks are dropped. On the other hand, the disparity gener-

ated by our method is very similar to the one generated by

the original BP.

Since the number of the inner iterations does not affect

the bandwidth, the tile-based BP can reduce the bandwidth

cost by using a smaller number of iteration. This is illu-

strated in Fig. 8 in which the iteration number is considered

now (note that it was assumed to be one in the previous sec-

tion). We can see that our algorithm only requires

1.125~1.5% bandwidth of the original BP. Using data reuse,

the bandwidth can be further reduced to 0.25%, only 1/400

of the original requirement.

Although we only show the application of the simple

stereo estimation, our tile-based BP can be used to other

applications since the overall performance is similar to the

original BP. The simple stereo estimation used in our expe-

 Cones Teddy Tsukuba Venus Avg.

Original BP [3] 2466383 2227224 333466 802006

Block-base

BP [7]

B=32
2554895 2308736 351942 853686

3.59% 3.66% 5.54% 6.44% 4.81%

B=64
2520843 2271426 350840 826655

2.21% 1.98% 5.21% 3.07% 3.12%

Tile-based

BP

B = 32
2498884 2253897 333982 819649

1.32% 1.20% 0.15% 2.20% 1.22%

B = 64
2486742 2241247 345227 817493

0.83% 0.63% 3.53% 1.93% 1.73%

Table 2. The energy of the solutions using different BP algorithms

and the increase of the energy to the original BP.

(a) (b)

(c) (d)

Figure 6. The disparity maps of Venus: (a) Ground truth, (b) the

block-based BP, (c) the original BP, and (D) the tile-based BP.

The block size (B) is 32.

(a) (b)

(c) (d)

Figure 7. The disparity maps of Tsukuba: (a) Ground truth, (b) the

block-based BP, (c) the original BP, and (d) the tile-based BP. The

block size (B) is 16.

riment is not comparable to the start-of-the-art algorithms,

but it is due to the usage of the simple energy functions. In

fact, all the top seven stereo estimation algorithms on the

Middlebury website choose the belief propagation to minim-

ize the complex energy functions they define. Therefore, our

tile-based BP is a good candidate of hardware implementa-

tion of these algorithms.

5. CONCLUSION

Belief propagation is a global energy minimization tech-

nique. Although it gives a better solution than the local mi-

nimization methods, it is more difficult for hardware im-

plementation. In this paper, we have analyzed the memory

and bandwidth requirements of the original BP algorithm

and showed that the bottleneck is resulted from the huge

number of the messages to be stored and transferred.

By characterizing the property of the messages, we

have developed a tile-based propagation algorithm. Since it

only stores and passes the boundary messages of the tiles, a

great reduction of memory and bandwidth is achieved. Also,

it converges to a solution of quality similar to that generated

by the original algorithm. Therefore, the proposed algorithm

is more suitable for hardware implementation than the origi-

nal algorithm.

There are several topics to be investigated as future

work. First, because the message passing scheme differs

from that of the original BP, a good balance between the

inner and outer iterations is required. If we use a large num-

ber of inner iterations for a tile, the resulting outgoing mes-

sages would only represent the local opinions of this tile,

while the information coming from far regions are filtered

out. In other words, these messages can be easily stuck in a

local optimal state.

Second, existing MRF applications often use more

complex data terms and smoothness terms than the ones we

used in our experiments. How to calculate and store these

data efficiently is an important topic. The data reuse scheme

used here needs to be refined.

Finally, the complexity of the proposed tile-based BP

needs to be addressed. Our initial study suggests that its

arithmetic complexity is similar to that of the original BP.

However, tile-based BP requires a smaller number of itera-

tions and thus the actual computational complexity should

be lower. It should also be investigated how an efficient BP

software such as the one described in [12] can be ported

onto hardware.

7. ACKNOWLEDGEMENT

Part of this project is supported by Himax Technologies, Inc.

8. REFERENCES

[1] S. Geman and D. Geman, “Stochastic Relaxation,

Gibbs Distributions, and the Bayesian Restoration of

Images,” IEEE Trans PAMI, vol. 6, no. 6, pp. 721-741,

1984.

[2] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approx-

imate Energy Minimization via Graph Cuts,” in Proc.

ICCV, vol. 1 pp. 377-384, 1999.

[3] W. Freeman, E. C. Pasztor, and O. T. Carmichael,

“Learning the Low Level Vision,” IJCV, vol. 70, no. 1,

pp. 41-54, 2000.

[4] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V.

Kolmogorov, A. Agarwala, M. Tappen, and C. Rother,

“A Comparative Study of Energy Minimization Me-

thods for Markov Random Fields with Smoothness-

Based Priors,” IEEE Trans PAMI, vol. 30, no. 6, pp.

1068-1080, 2008.

[5] J.-C. Tuan, T.-S. Chang, and C.-W. Jen, “On the Data

Reuse and Memory Bandwidth Analysis for Full-

Search Block-Matching VLSI architecture,” IEEE

Trans CSVT, vol. 12, no. 1, pp. 61-72, 2002.

[6] T. Yu, R.-S. Lin, B. Super, and B. Tang, “Efficient

Message Representations for Belief Propagation,” in

Proc. ICCV, 2007.

[7] Y-.C. Yseng, N. Chang, and T.-S. Chang, “Low Memo-

ry Cost Block-Based Belief Propagation for Stereo

Correspondence,” in Proc. ICME, pp. 1415-1418, 2007.

[8] T.-C. Chen, S.-Y. Chien, Y.-W. Huang, C.-H. Tsai, C.-

Y. Chen, T.-W. Chen, and L.-G. Chen, “Analysis and

Architecture Design of an HDTV720p 30 Frames/s

H.264/AVC Encoder,” IEEE Trans CSVT, vol. 16, no.

6, pp. 673-688, 2006.

[9] The Middlebury computer vision pages. Available:

http://vision.middlebury.edu/

[10] D. Scharstein and R. Szeliski, “A Taxonomy and Eval-

uation of Dense Two-Frame Stereo Correspondence

Algorithms”, IJCV, vol. 47, pp.7-42, 2002.

[11] S. Birchfield and C. Tomasi, “A Pixel Dissimilarity

that is Insensitive to Image Sampling,” IEEE Trans

PAMI, vol. 20, no. 4, pp. 401-406, 1998.

[12] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient

Belief Propagation for Early Vision,” IJCV, vol. 70, no.

1, pp. 41-54, 2006.

Figure 8. The bandwidth cost of the original BP, the tile-based

(TB) BP, and the TB BP with data reuse (TBDR) of different

block sizes (B = 16, 32, and 64).

http://vision.middlebury.edu/
http://vision.middlebury.edu/stereo/data/taxonomy-IJCV.pdf
http://vision.middlebury.edu/stereo/data/taxonomy-IJCV.pdf
http://vision.middlebury.edu/stereo/data/taxonomy-IJCV.pdf

