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ABSTRACT 

 

Belief propagation has become a popular technique for solv-

ing computer vision problems, such as stereo estimation and 

image denoising. However, it requires large memory and 

bandwidth, and hence naïve hardware implementation is 

prohibitive. In this paper, we first analyze the memory and 

bandwidth requirements of the technique from the hardware 

perspective. Then, we propose a tile-based belief propaga-

tion algorithm that works with existing data reuse schemes 

and achieves bandwidth reduction by a factor of 10 to 400. 

We apply the proposed algorithm to stereo estimation and 

show that its performance is comparable to the original al-

gorithm. 

 

Index Terms— Belief propagation, hardware imple-

mentation, stereo estimation. 

 

1. INTRODUCTION 

 

Many problems in computer vision and image processing 

attempt to assign an optimal label to each node (pixel, block, 

or some other element) of a scene representation. A label 

stands for a local quantity. For example, the label for a pixel 

is the disparity vector in stereo estimation and the motion 

vector in motion/optical flow estimation. 

Finding the optimal label assignment can be formulated 

as a problem of energy (cost) minimization on a Markov 

Random Field (MRF). The energy has two terms: a data 

term Ed that penalizes the inconsistency between the labels 

and the observed data, and a smoothness term Es that favors 

the spatial coherence of the labels. The optimal labels {lp} 

are the labels that minimize the combination of these two 

terms, 
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where P is the set of all nodes and G is a specified neigh-

borhood, such as the 4-nearest neighboring pixels. 

Though the MRF formulation was proposed more than 

20 years ago [1], the problem is NP-hard. In the late nineties, 

efficient algorithms such as graph cuts [2], (loopy) belief 

propagation [3], and numerous variants were proposed [4]. 

These algorithms can find strong locally optimal solution in 

polynomial time and enable many applications such as im-

age denoising, inpainting, image stitching, bi-layer segmen-

tation, etc [4]. 

While the software implementation of these algorithms 

is generally free of resource constraint, the hardware im-

plementation needs to consider bandwidth, internal and ex-

ternal memory size, degree of parallelism, regularity of 

memory access, etc. Therefore, an algorithm efficient on 

software may not be suitable for hardware implementation. 

This is particularly true for portable devices, such as cell 

phones and digital cameras. 

In our initial study, we find that belief propagation has 

high potential for hardware implementation. It is highly pa-

rallel and only uses simple operations. However, it requires 

huge memory and bandwidth. Thus, the straightforward 

hardware implementation is prohibitive.  

In this paper, we first focus on the bandwidth and 

memory analysis of the belief propagation technique.  Then 

we propose a tile-based belief propagation algorithm to 

overcome the memory and bandwidth bottlenecks. Com-

pared to the original belief propagation, the proposed algo-

rithm has similar performance with much lower bandwidth 

and memory requirements. Therefore, it is more suitable for 

hardware implementation than the original algorithm. 

The rest of the paper is organized as follows. In Section 

2, we review the original belief propagation and analyze its 

bandwidth and memory consumption. In Section 3, we 

present the proposed tile-based belief propagation in detail. 

In Section 4, we test the proposed algorithm on stereo esti-

mation. We conclude this paper and discuss future research 

directions in Section 5. 

 

2. BELIEF PROPAGATION 

 

The belief propagation (BP) iteratively performs the mes-

sage passing operations. At iteration t, each node p sends a 

 𝐿 -dimensional message 𝑀𝑝𝑞
𝑡  to its neighbor q. Each entity 

𝑀𝑝𝑞
𝑡 (l) in the message is 
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where L is the set of all labels, |L| is the number of labels, 

and Np is the set of the neighbors of p (Fig. 1(a)). 𝑀𝑝𝑞
𝑡 (l) 

encodes the opinion of p about assigning label lq to q. Node 

p first scans all labels l' and decides the one having the 

greatest support for assigning l to q based on 1) the smooth-

ness (compatibility) cost between l' and l (the first term in 

Eq. (2)), 2) the self-judgment of p about being assigned l' 

(the second term), and 3) The opinion from neighbors ex-

pect q (Np\q) about assigning l' (the third term). During BP, 

all nodes exchange messages (opinions) about the label as-

signment and through iterations, nodes far away from p can 

influence p’s label assignment.  

The messages are iteratively propagated. As the BP-M 

method in [4], we define a single iteration as propagating a 

message from the top-left node to the bottom right one, and 

then propagating a message from the bottom-left node to the 

top-left one. After enough number of iterations, say T, the 

label of p is determined based on the local likelihood and 

the messages from the neighbors (Fig. 1(b)): 

   
   ,

arg min .T

p d p p
l L

p p N p

l E l M l


 

  
  

  
  (3) 

To this point we can clearly see the advantages of BP 

for hardware implementation. Firstly, it is highly parallel. In 

message passing, each node loads the messages from the 

previous iteration, operates independently, and generates 

new messages. Secondly, it only uses simple operations 

such as additions and comparisons. Third, the memory 

access is regular. If we update the message sequentially, the 

required input data can be streamed into the processor with 

ease. On the contrary, other algorithms such as graph cut 

require complicated operations like tree construction and 

sorting. They also frequently perform the random memory 

access, which obstruct the efficient hardware pipeline. 

However, BP cannot be efficiently implemented in 

hardware due to the huge memory and bandwidth consump-

tion. Like other MRF algorithms, it stores N|L| data terms, 

where N is the number of nodes (the smoothness term can 

usually be analytically calculated on-the-fly). BP stores ex-

tra 4N|L| messages for the 4-connected neighborhood system. 

Each neighboring pair has two messages, one for each direc-

tion. Therefore, it totally needs to store 5N|L| elements. For 

example, in stereo estimation on a VGA image pair with the 

disparity range of 16, assume each message and data term 

takes 1 bytes, BP totally takes 24,576,000 bytes, 80 times 

the size of the image.  

In performing message passing, each node loads 3 

messages and |L| data term and outputs 1 new message. Be-

cause for each node there are four outgoing messages, BP 

requires 20N|L| data transferring per iteration and 20N|L|T 

for convergence. Using the example above and assume BP 

converges at T=50, this amounts to 4,915,200,000 (4.58G) 

bytes data transferring. For real-time video application, it 

corresponds to 137.33GB per second. Obviously this daunt-

ing bandwidth requirement is infeasible for the existing 

hardware, as discussed in [8].  

Therefore, proper data reuse and data reduction strate-

gies must be applied for efficient hardware design. In [6], 

several compression techniques are proposed to compress 

the messages. However, the number of data transfer is un-

changed. Another trivial method is to partition the image 

into many blocks and perform BP within each block inde-

pendently [7]. However, this approach downgrades the be-

lief propagation from a global technique into a local one and 

results in bad local minimums (See Table 2 and Fig. 6 and 

7). In the next section, we attack the bandwidth bottleneck at 

the algorithm level by using a better message passing me-

thod. However, the proposed method can cooperate with 

many existing data reuse method. 

 

3. TILE-BASED BELIEF PROPAGATION 

 

Before describing the proposed algorithm, we first look at 

the message passing procedure locally at a small tile (Fig. 

2(a)). We can see that for this small region, we do not have 

to care about how messages outside the region (red ones in 

Fig. 2(a)) are constructed. As long as the procedure is to-

ward convergence, these messages should carry the correct 

opinions about the labeling of this region from other regions. 

According to the Markovian property, knowing these mes-
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Figure 1. (a) A message at iteration t from p to q is constructed 

using the messages from r, s, and u to p at iteration t−1. (b) The 

node p collects all messages from the neighbors to decide the best 

label. 

(a) (b)

Tile

 
Figure 2. (a) For a small block (black nodes), the messages 

around it (red arrows) give enough information about the outside 

world. (b) The proposed tile-based belief propagation method. The 

tiles are first processed in a raster scan order and then in an in-

verse-raster scan order. 



sages is identical to knowing all information of the nodes 

outside the current tile. 

This assumption is verified by a simple experiment. 

We setup a MRF with simple energy definition and perform 

BP. After convergence, we reset the messages within a spe-

cific region and re-run BP with this region by fixing the 

message around the boundary of the region. After conver-

gence again, we find that the new messages are almost iden-

tical to the original ones before reset. In other words, given 

the boundary messages and the data terms and smoothness 

terms of a local patch, the messages inside can be thrown 

away without losing any information. 

 

3.1. Proposed Algorithm 

 

According to this observation, we propose a tile-based 

belief propagation method. The algorithm is illustrated in 

Fig. 2(b) and the pseudocode is shown in Fig. 3. In the be-

ginning, the image is split into non-overlapping tiles of size 

B×B. The algorithm has a two-level structure: outer and 

inner iterations. In the outer iteration, the tiles are first 

processed in a raster scan order (line 3). For each tile, the 

messages from other tiles (red ones in Fig. 2 (b)) and the 

date terms Es are loaded and then BP (Eq. (2)) is preformed 

within the tile (BPinOneTile in Fig. 3). After Ti inner itera-

tions (line 6-7), the messages sending outside the tile are 

stored (blue ones in Fig. 2(b)). The inner iterations acts like 

a filtering operation that purifies the messages according to 

the data terms and smoothness terms within the tile. At the 

end of the scan, we reach the bottom-right tile. We then per-

form the same procedure in an inverse-raster scan order 

(line 9-17, Fig. 2(b)). At the To outer iteration, the best la-

bels are determined using Eq. (3).  

 

3.2. Bandwidth and Memory Analysis 

 

3.2.1 Proposed Tile-based Belief Propagation 

 

The main advantage of the proposed algorithm is that 

compared with the original BP, the memory and bandwidth 

consumption is greatly reduced. We do not need to store the 

messages inside the tile. In each new iteration, the messages 

inside can be re-generated from the boundary messages and 

data terms. Therefore, the off-chip storage of the messages 

becomes:  

    4 4W B H B B L N L B    (4) 

where W and H are the width and height of the image, re-

spectively (WH=N). The reduction is a factor of B. Similarly, 

the bandwidth becomes:  

Data terms Incoming Outgoing
messages messages

2( 4 4 ) (2 16 ) .o oN L N L B N L B T N L N L B T     
(5) 

The factor 2 is because each tile is processed twice at each 

iteration. 

We use the same example, stereo estimation on a data-

set of VGA size, and the disparity range is 16, to demon-

strate the memory and bandwidth reduction of the proposed 

algorithm. Because each algorithm has different conver-

gence property, we assume the number of the (outer) itera-

tion is 1 here. The comparison is shown in Table 1. For the 

original BP, when there is only one PE, it requires very 

small internal memory. However, it requires huge external 

memory and bandwidth. The block-based BP processes B
2
 

nodes at a time and thus the 4B
2
 messages between the 

nodes of the same block can be loaded at once. After the 

messages are updated, they can be sent to the external to-

gether. This method can save the bandwidth to 45%. How-

ever, the size of the external memory is unchanged since all 

messages must be stored. Also the reduction factor does not 

change with the block size. This limits the flexibility of the 

design. Furthermore, because the messages between the 

blocks are dropped, the results could be disastrous (see Sec-

tion 4). 

The proposed tile-based BP also performs the message 

passing one tile at a time. However, only the messages 

around the tile are stored and transferred. Therefore, the 

external memory reduces to 21.25~30% and the bandwidth 

reduces to 5.625~10%, depending on the tile size. Although 

the tile-based BP requires a larger internal memory than the 

original BP does, this cost is affordable to the current tech-

nology. 

 

 

function {lp}TileBasedBP(Ed, Es, B, To, Ti)  

1 Initialize all message entities 𝑀𝑝𝑞
0 (𝑙)=0 

2 for to=1,…,To 

3     loop through all tiles in a raster scan order 

4         Load 𝑀𝑝𝑞
𝑡−1 for p∉C and q∈C; //C is the current tile. 

5         Load Ed(lp) for p∈C; 

6         for ti=1,…,Ti 

7             {𝑀𝑝𝑞
𝑡 }  BPinOneTile({𝑀𝑝𝑞

𝑡−1}, Ed, C); 

8         Store {𝑀𝑝𝑞
𝑡 }for p∈C and q∉C; 

9     loop through all tiles in a inverse-raster scan order 

10         Load {𝑀𝑝𝑞
𝑡−1} for p∉C and q∈C; 

11         Load Ed(lp) for p∈C; 

12         for ti=1,…,Ti 

13             {𝑀𝑝𝑞
𝑡 } BPinOneTile({𝑀𝑝𝑞

𝑡−1}, Ed, C); 

14         if (to = To) Obtain {lp} for p∈C; //using Eq. (3); 

15         else Store {𝑀𝑝𝑞
𝑡 } for p∈C and q∉C; 

16 return {lp}; 

 

 

function {𝑀𝑝𝑞
𝑡 } BPinOneTile({𝑀𝑝𝑞

𝑡−1}, Ed, C)  

17 Initialize 𝑀𝑝𝑞
𝑡 (𝑙)=0 for all p∈C and q ∈C; 

18     Update rightward messages; //using Eq. (2); 

19     Update leftward messages; 

20     Update downward messages; 

21     Update upward messages; 

22 return {𝑀𝑝𝑞
𝑡 }; 

 

Figure 3. The pseudocode of the proposed algorithm. 



3.2.2 Data Reuse for Data Term Calculation 

 

While the proposed algorithm greatly reduces the 

memory and bandwidth, the advantages of the original BP 

are still preserved. The algorithm is still highly parallel. We 

can use B identical process elements (PE’s) to calculate one 

row (column) of new messages in parallel. Furthermore, 

because the algorithm is tile-based, several pipeline and data 

reuse techniques used in the video compression can be ap-

plied [5] to lower the bandwidth by using slightly more in-

ternal memory. 

For example, in stereo estimation, the data term Ed(lp) 

is usually defined as a function of the intensity difference 

between the pixel (px, py) in left image IL and the pixel (px+lp, 

py) in right image IR: 

      , , .  d p L x y R x p yE l f I p p I p l p  (6) 

Because the proposed algorithm is performed in tile-based, 

we can . When performing BP for one tile, we can load the 

images and construct the data terms of the next tile. Using 

the level-C memory reuse scheme [5], we only need to load 

2B
2
 bytes for calculating the data cost of one tile, as shown 

in Fig. 4. Therefore, the external memory for the data terms 

are eliminated and the overall bandwidth decreases from 

(2N|L|+16N|L|/B)T to: 

image 
messagespixels
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And the internal memory size increases from |L|B
2
 to  

2 2

 tiledata term  range

| | ( ) .  
currentsearch

L B B L B B  (8) 

Using this technique, we can further reduce the memory and 

bandwidth consumption, as shown in Table 1. Compared 

with to original BP, the external memory is reduced by a 

factor of 10~80 and the bandwidth is reduced by a factor of 

18~80.  

 

4. EXPRIMENTAL RESULTS 

 

We have shown that the proposed algorithm can significant-

ly reduce the memory and bandwidth. Here we use the ste-

reo estimation to show that performance-wise, our algorithm 

is much better than the block-based BP and comparable to 

the original BP.  

 Original BP [3] Proposed tile-based BP Proposed tile-based BP + data reuse 

Block(tile)-size (B2) − 82 162 322 642 82 162 322 642 

Internal  
memory 

Data terms 16 1,024 4,096 16,384 65,536 1,280 4,864 18,944 74,752 

Messages 64 4,096 16,384 65,536 262,144 4,096 16,384 65,536 262,144 

Total 80 5,120 20,480 81,920 327,680 5,376 21,248 84,480 336,896 

Factor (to the 

same tile size) 

 
100% 100% 100% 100% 105.0% 103.8% 103.1% 102.8% 

External  

memory 

Data terms 4,915,200  4,915,200 0 

Messages 19,660,800 2,457,600 1,228,800 614,400 307,200 2,457,600 1,228,800 614,400 307,200 

Total 24,576,000 7,372,800 6,144,000 5,529,600 5,222,400 2,457,600 1,228,800 614,400 307,200 

Factor (to 

original BP) 
100.00% 30% 25% 22.5% 21.25% 10% 5% 2.5% 1.25% 

Bandwidth 

Data terms 19,660,800 4,915,200 614,400 

Messages 78,643,200 4,915,200 2,457,600 1,228,800 614,400 4,915,200 2,457,600 1,228,800 614,400 

Total 98,304,000 9,830,400 7,372,800 6,144,000 5,529,600 5,529,600 3,072,000 1,843,200 1,228,800 

Factor (to 

original BP) 
100% 10% 7.5% 6.25% 5.625% 5.625% 3.125% 1.875% 1.25% 

Table 1. The memory and bandwidth consumption of the original belief propagation (BP) [3], the proposed tiles-based BP, and the tile-

based BP plus the data reuse technique for on-line calculating the data terms (without counting the external memory size of the image pair). 

 
 

Figure 4. Level-C data reuse for calculating the data terms. Bi and 

Bi-1 are two successive blocks in the left image. Because most of 

their search region in the right image is overlapped, besides the 

block Bi+1 itself, only B2 pixels are needed to be loaded. 

  
(a) (b) 

  
(c) (d) 

Figure 5. Dataset for stereo estimation. (a) Cones, (b) Teddy, (c) 

Tsukuba, and (d) Venus. 



We use four dataset: Cones, Teddy, Tsukuba, and Ve-

nus, from the Middlebury vision website [9] (Fig. 5 (a-d)). 

These dataset are commonly used in the computer vision 

community for performance measurement [10]. Since our 

goal is to compare the performance of difference BP algo-

rithms, we adopt the simple data and smoothness term defi-

nitions according to [2]. The data term is the Birchfield-

Tomasi method which can minimize the sampling effect 

[11]. The smoothness term is a generalized Potts model: 

   , min , . s p q p q sE l l l l T  (9) 

For a fair comparison, we set Ts=2 and λ=20 for all BP algo-

rithms. 

Different BP algorithms require different number of 

iterations. To reach the performance limitation of the algo-

rithms, we empirically choose the number of the iterations 

to be large enough such that all algorithms converge for all 

dataset. For the original BP and the block-based BP, T is 50; 

for the tile-based BP, inner iteration Ti is set to 8 for B=32 

and 24 for B=64, and To is 10 (In fact, setting To=3 gives 

visually plausible results).  

We first examine the energy value of the difference al-

gorithms after convergence, as summarized in Table 2. 

Compared with the block-based BP, the solution found by 

the tile-based BP is more close to the one found by the orig-

inal BP. For example, when B = 32, block-base BP increases 

the energy by 3.59 to 6.44% (avg. 4.81%), and the proposed 

tile-based BP only increases the energy by 0.15 to 2.20% 

(avg. 1.22%). Actually, in all our experiments, after the first 

outer iteration, our energies are already below the ones ob-

tained by the block-based BP after 50 iterations.  

Not only the energy obtained by the tile-based BP is 

closer to that obtained by the original BP, the resulting dis-

parity is also more accurate. The estimated disparity maps of 

Venus and Tsukuba are shown in Fig. 6 and 7, respectively. 

We can see that the block-based BP results in serious blocky 

artifacts because the messages between the neighboring 

blocks are dropped. On the other hand, the disparity gener-

ated by our method is very similar to the one generated by 

the original BP. 

Since the number of the inner iterations does not affect 

the bandwidth, the tile-based BP can reduce the bandwidth 

cost by using a smaller number of iteration. This is illu-

strated in Fig. 8 in which the iteration number is considered 

now (note that it was assumed to be one in the previous sec-

tion). We can see that our algorithm only requires 

1.125~1.5% bandwidth of the original BP. Using data reuse, 

the bandwidth can be further reduced to 0.25%, only 1/400 

of the original requirement. 

Although we only show the application of the simple 

stereo estimation, our tile-based BP can be used to other 

applications since the overall performance is similar to the 

original BP. The simple stereo estimation used in our expe-

 Cones Teddy Tsukuba Venus Avg. 

Original BP [3] 2466383 2227224 333466 802006  

Block-base  

BP [7] 

B=32 
2554895 2308736 351942 853686  

3.59% 3.66% 5.54% 6.44% 4.81% 

B=64 
2520843 2271426 350840 826655  

2.21% 1.98% 5.21% 3.07% 3.12% 

Tile-based  

BP 

B = 32 
2498884 2253897 333982 819649  

1.32% 1.20% 0.15% 2.20% 1.22% 

B = 64 
2486742 2241247 345227 817493  

0.83% 0.63% 3.53% 1.93% 1.73% 

 

Table 2. The energy of the solutions using different BP algorithms 

and the increase of the energy to the original BP. 

  
(a) (b) 

  
(c) (d) 

 

Figure 6. The disparity maps of Venus: (a) Ground truth, (b) the 

block-based BP, (c) the original BP, and (D) the tile-based BP. 

The block size (B) is 32.  

  
(a) (b) 

  
(c) (d) 

 

Figure 7. The disparity maps of Tsukuba: (a) Ground truth, (b) the 

block-based BP, (c) the original BP, and (d) the tile-based BP. The 

block size (B) is 16. 



riment is not comparable to the start-of-the-art algorithms, 

but it is due to the usage of the simple energy functions. In 

fact, all the top seven stereo estimation algorithms on the 

Middlebury website choose the belief propagation to minim-

ize the complex energy functions they define. Therefore, our 

tile-based BP is a good candidate of hardware implementa-

tion of these algorithms. 

 

5. CONCLUSION 

 

Belief propagation is a global energy minimization tech-

nique.  Although it gives a better solution than the local mi-

nimization methods, it is more difficult for hardware im-

plementation. In this paper, we have analyzed the memory 

and bandwidth requirements of the original BP algorithm 

and showed that the bottleneck is resulted from the huge 

number of the messages to be stored and transferred.  

By characterizing the property of the messages, we 

have developed a tile-based propagation algorithm. Since it 

only stores and passes the boundary messages of the tiles, a 

great reduction of memory and bandwidth is achieved.  Also, 

it converges to a solution of quality similar to that generated 

by the original algorithm. Therefore, the proposed algorithm 

is more suitable for hardware implementation than the origi-

nal algorithm. 

There are several topics to be investigated as future 

work. First, because the message passing scheme differs 

from that of the original BP, a good balance between the 

inner and outer iterations is required. If we use a large num-

ber of inner iterations for a tile, the resulting outgoing mes-

sages would only represent the local opinions of this tile, 

while the information coming from far regions are filtered 

out. In other words, these messages can be easily stuck in a 

local optimal state. 

Second, existing MRF applications often use more 

complex data terms and smoothness terms than the ones we 

used in our experiments. How to calculate and store these 

data efficiently is an important topic. The data reuse scheme 

used here needs to be refined. 

Finally, the complexity of the proposed tile-based BP 

needs to be addressed. Our initial study suggests that its 

arithmetic complexity is similar to that of the original BP. 

However, tile-based BP requires a smaller number of itera-

tions and thus the actual computational complexity should 

be lower.  It should also be investigated how an efficient BP 

software such as the one described in [12] can be ported 

onto hardware. 
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Figure 8. The bandwidth cost of the original BP, the tile-based 

(TB) BP, and the TB BP with data reuse (TBDR) of different 

block sizes (B = 16, 32, and 64). 
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